

PFPD Training Course – Part 4 Applications Development

www.oico.com

Most Common Questions

- What is the sensitivity of the PFPD?
- Is the PFPD linear?
- 3. What is the dynamic range?
- 4. How do I calibrate the PFPD?
- 5. Is the response equimolar
- 6. What is quenching?

Question #1 What is the sensitivity of the PFPD?

PFPD Sensitivity

- Minimum detectability is the mass flow rate of atoms (S or P) in the carrier gas that gives a detectable signal equal to twice the peak-to-peak noise level (ASTM definition)
- Calculated from the measured sensitivity and noise level
- D = 2N/S, where S = Area/mass
- D = 2N * mass/Area (linear response only)

 $= 20 \mu volts$

Detectivity Calculation

Opportunity through Innovation™

Method Development

- Adjust method parameters for 1-2 pg S on column:
 - Introduction technique
 - Sample volume
 - Split ratio
 - % Sulfur in compound
- Use this as your lowest instrument calibration point

PFPD Sensitivity

- Eg. 1 μ L of 19 ppb (pg/ μ L) methyl sulfide standard injected with 9:1 split ratio
 - = 1.9 pg methyl sulfide to the detector
 - = 1 pg S to the detector

PFPD Sensitivity

- Minimum amount of sulfur that can be detected by the PFPD is approx. 1-5 pg
 - Configured specifically for sulfur
 - Well behaved compound
 - Dependent on chromatography, interferences, etc.
- Phosphorus detectivity is about 10x lower
 - DP specification < 100 fg P/second
 - Minimum 0.1 pg P on-column
- Nitrogen detectivity is about 25-50x higher
 - DN specification < 25-50 pg N/second
 - Minimum ~50 pg N on-column

Question #1 Is the PFPD linear?

Sulfur Linearity

- Chemistry of the S₂* within the pulsing flame produces a naturally occurring quadratic response
- Same for PFPD and for FPD
- In OI PFPD the signal is digitally processed
- Allows application of a linearizing algorithm
- Outputs a linearized signal

Sulfur Signal

Demonstration of Calibration

Mix of 4 sulfur compounds:

Methyl sulfide (MS)

Ethyl methyl sulfide (EMS)

Methyl disulfide (MDS)

Methyl trisulfide (MTS)

25 Calibration concentrations 1.0 pgS - 1000 pgS

Triplicate injections 1 µL injection

Instrument Conditions

Agilent 6890 GC with EPC
Agilent autosampler
1 μL split injection, 10:1, 200°C
DB-5MS column (30m x 0.25mm x 1.0 μm film)
35°C for 5 min, 15°C/min to 220, hold 2 min

OI Analytical Model 5380 PFPD 2 mm combustor H_2 rich (H_2 /Air ~ 1.1) BG-12 filter, R1924 PMT Collected both linear and quadratic modes

Calibration Standard at ~5 pg Sulfur

Methyl Sulfide Calibration

Quadratic $R^2 = 0.9995$

Linear
$$R^2 = 0.9992$$

19 Calibration Levels x 3 injections each Range from 1.0 to 103.7 pg sulfur

Methyl Disulfide Calibration

Quadratic $R^2 = 0.999$

Linear $R^2 = 0.9992$

16 Calibration Levels x 3 injections each Range from 1.4 to 98.4 pg sulfur

Methyl Triulfide Calibration

Quadratic $R^2 = 0.9996$

Linear $R^2 = 0.9992$

13 Calibration Levels x 3 injections each Range from 1.6 to 64.1 pg sulfur

Ethyl Methyl Sulfide Calibration

Quadratic $R^2 = 0.9995$

Linear $R^2 = 0.9991$

18 Calibration Levels x 3 injections each Range from 4.5 to 147.4 pg sulfur

Average Reproducibility

Calibration By Headspace

0.0E+00

Ethanethiol R2 = 0.9996 Dimethyl disulfide R2 = 1.000

Conc. (ppb S)

Sulfur Calibration in Quadratic Mode

Calibration By Purge-and-Trap

MDS Calibration					
000 PPD Response 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		$R^2 =$	0.9991		_
0.000	0.200	0.400	0.600	0.800	1.000
0.000	0.200	Conc		0.000	1.000

Compound	Cal Range	R ²	R ²
	(ppbS)	Quadratic	Linear
ETHIOL	0.52 - 10.4	0.9996	0.9994
ES	0.15 - 1.50	0.9996	0.9991
MS	0.12 - 1.16	1.000	0.9996
EMS	0.14 - 1.42	0.9998	0.9990
MDS	0.09 - 0.94	0.9998	0.9991
MTHIOAC	0.14 - 7.1	0.9998	0.9997
ETHDS	0.09 - 0.90	0.9990	0.9982
MTS	0.11 - 1.10	0.9998	0.9998
ETHIOAC	0.20 - 4.0	0.9990	0.9998

Questions #3 and #4
What is the dynamic range?
How do I calibrate the PFPD?

Calibration Thus Far

- Set lowest calibration point at ~1 pg S on column
- Sulfur emission saturates at ~100 pg S on column
 - Varies slightly depending on peak shape/width
- Linear or quadratic calibration possible throughout this range (~1 to 100 pg S on column)
 - User defined

Comparison of Sulfur Emissions

Saturated Sulfur Emission

Quenched Sulfur Emission

Extending the Dynamic Range

- Practical dynamic range is a little under 2 orders of magnitude using the "standard conditions"
- Can be extended using one of several techniques

Technique #1

Increase Electrometer Range

Electrometer Range 10 1 to 102 pg S $R^2 = 0.9998$

Electrometer Range 100 1 to 244 pg S $R^2 = 0.9998$

Technique #1: Pros and Cons

Pros	Cons
Easy	Less sensitive at low concentrations
Increases max from 100 pgS to ~250 pgS	
Linear or quadratic curve fit	

Technique #2

- Curve fit method
 - Use linear mode
 - Acquire data across entire range desired
 - Disregard emission saturation point
 - Use data handling software to find best curve fit

1 - 500 pg SLinear Curve Fit $R^2 = 0.99639$

1 - 1000 pg SLinear Curve Fit $R^2 = 0.9671$

1 - 500 pg SQuadratic Curve Fit $R^2 = 0.99946$

1 - 1000 pg SQuadratic Curve Fit $R^2 = 0.99590$

Note: Using quadratic fit to the linear output

1 - 500 pg SCubic Curve Fit $R^2 = 0.9991$

1 – 1000 pg S *Cubic Curve Fit* (Neg. slope)

MS Calibration 1 to 400 pg Sulfur Using Excel Software

1 to 406 pg S Power fit $R^2 = 0.9941$

Technique #2: Pros and Cons

Pros	Cons
Easy	Not linear
Extends range up to 3 orders magnitude	Increased error near curve maximum (i.e. at a horizontal tangent)
Good to excellent curve fit every time	For some options requires more calibration points
Fully utilizes sophisticated software options	

Technique #3: Dual Gates

- Gate 1 = 6 25 msec
- Gate 2 = 1 4 msec
- Use Gate 1 for concentrations below the saturation point (~1 to 100 pg S)
- Use Gate 2 for concentrations above the saturation point (~100 pg to 1 ng)

Comparison of Sulfur Emissions

Extended Calibration Using Dual Gates

Opportunity through Innovation™

Extended Calibration Using 1-4 msec Gate

Extended Range Using Dual Gate Settings

	Without Dual Gate	With Dual Gate
MS	1.0 - 103.7	1.0 pg - 1 ng
MDS	1.4 - 98.4	1.4 pg - 1 ng
MTS	1.6 - 64.1	1.6 pg - 1 ng

All concentrations in pg Sulfur on column

Technique #3: Pros and Cons

Pros	Cons
Extends range to full 3 orders of magnitude	More data "crunching" simplified with PFPD software
Accurate	Coeluting large HC peaks will cause errors
Linear or quadratic modes	Loss of selectivity with HC peaks must be considered

Method Development

- Measure PFPD detectivity at <1 pgS/sec
- Adjust method parameters for 1-2 pg S on column
 - Lowest instrument calibration point
- Select best calibration technique
 - ~1 to 250 pg S Linear or Quadratic
 - \sim 1 to \sim 500 pg S Curve Fit
 - ~1 to ~500 pg S Dual Gate

Calibration Technique for Gas Sampling System

- Standard with two compounds at different concentrations (e.g. MeSH at 12.4 ppbS and SO₂ at 112 ppbS)
- Analyze at four levels (e.g. different gas flows)
- Generate eight-point curve based on amount of Sulfur

Calibration Curve Based on Sulfur

- 0.5-mL gas sample loop
- Split ratio 20:1
- PFPD in sulfur mode
- Linear calibration using peak areas
- 12.4 775.4 ppb S
- $R^2 = 0.9992$

MeSH and SO₂ in CO₂

Concentrations of MeSH and CO₂ Used for Calibration

SO ₂ ii	n CO ₂	MeSH	in CO ₂
Conc	% RSD	Conc	% RSD
(ppb S)	(n = 10)	(ppb S)	(n = 10)
112.0	0.99	12.4	2.71
216.8	1.54	24.1	2.35
432.8	1.88	48.2	2.59
775.4	1.02	86.4	0.88

Gas Sampling Technique Pros and Cons

Pros	Cons
Fast and easy	Peaks widths/areas must be the same
Equimolar response	Errors if peaks widths differ
Calculate total sulfur concentration	
Ideal for gas sampling system	

Equimolar Sulfur Response

- Once the output signal has been linearized, sulfur response of the PFPD is equimolar
- "X" amount of sulfur at the detector will always produce "X" response
- Independent of sulfur environment
- Apparent non-equimolar responses are due to losses elsewhere in the system
 - Volatility
 - Reactivity (e.g. H2S)
- Phosphorus response is naturally linear and equimolar

Equimolar Response Sulfur

- 3 Mixes of sulfur compounds analyzed
- Volatile, so some compounds in 2 mixes
- Response factors calculated
- RF for all compounds very similar
- RF %RSD was < 4%

Chromatograms for 3 Mixes

Sulfur Response Factors

Mix 1 RFs	
Methyl sulfide	1.73
Carbon disulfide	1.80
Thiophene	1.87
Amyl sulfide	1.89
Heptyl mercaptan	1.97

Mix 2 RFs		
Methyl sulfide	1.80	
Ethanethiol	1.79	
Dimethyl disulfide	1.83	

Mix 3 RFs	
2-Methylpropanethiol	1.91
1-Methylproanethiol	1.90
Thiophene	1.98
Amyl sulfide	1.83
Heptyl mercaptan	1.97
<i>t</i> -Butyl disulfide	1.86
1-Dodecanethiol	1.89

Average Sulfur RF =
$$1.87$$

RSD = 3.9%

Equimolar Sulfur Response

Slope

MS = 63.8

EMS = 63.6

MDS = 69.7

MTS = 74.5

6.6% RSD

Volatile compounds have lower RFs due to losses

Equimolar Response Phosphorous

- 1 Mixes of phosphorous compounds
- Response factors calculated
- RF for all compounds very similar
- RF %RSD was < 10%

Phosphorous Mix Chromatogram

Phosphorous Mix = 9 Compounds ~ 3 to 20 pg Phosphorous per Compound

Phosphorus Response Factors

Phosphorus RFs	
Demeton O	2629
Demeton S	2622
Diazinon	2754
Disulfoton	2913
Parathion methyl	2890
Malathion	2631
Parathion ethyl	2708
Ethion	2574
Azinphos methyl	2057

Avg. Phos. RF = 2675RSD = 9.6%

Question #6 What is "quenching"?

Sulfur Suppression Type #1

- Sulfur self-quenching occurs when very high concentration of sulfur within the combustor causes the S2* emissions to be self-absorbed, and never transmitted to the PMT
 - Starts at about 1000 pg S
- Easily adjusted for by reducing the amount of sulfur injected
 - Increase split ratio
 - Decrease injection volume

Self-Quenched Sulfur Emission

Sulfur Suppression Type #2

- Sulfur suppression, aka "quenching", results when high concentrations of HC cause competing reactions within the combustor, forming COS instead of S2*
- Shortens the lifetime of the sulfur emission
- Must have a very high concentration of hydrocarbon co-eluting with the sulfur peak for suppression to occur
 - Similar to temporary loss of signal with solvent front seen on other types of detectors

Onset of HC Quenching

Sulfur Suppression (cont.)

- Potential for suppression can be minimized by selection of proper application parameters
 - Split ratio
 - Injection volume
 - Dilution
 - Column selection and conditions
- Suppression is observable and identifiable on the PFPD's real-time emission display
 - Also can be saved for post-acquisition review (PFPDView)

Increase Split Ratio

Diesel fuel with 0.15% total sulfur content 1 µL injection; split 250:1.

Reduce Injection Volume

Light cycle oil with 610 ppm total sulfur content 0.3 µL injection; split 100:1.

Adjust Chromatography

13 sulfur compounds in propylene at 1 ppm each

Adjust Chromatography

1 μL injection; split 3:1; DB-WAX column.

Adjust PFPD Conditions

Gasoline with 5 ppm total sulfur content 1 µL injection; split 10:1.

End of Part 4

